Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            A comparison of atomic layer deposited Al2O3on PVDF-based copolymers in polymer transistors shows a significant improvement in the subthreshold swing for PVDF-HFP devices compared with PVDF-TrFE. Al2O3passivates the interfacial traps.more » « lessFree, publicly-accessible full text available July 3, 2026
- 
            Sensitive, accurate, and early detection of biomarkers is essential for prompt response to medical decisions for saving lives. Some infectious diseases are deadly even in small quantities and require early detection for patients and public health. The scarcity of these biomarkers necessitates signal amplification before diagnosis. Recently, we demonstrated single-molecule-level detection of tuberculosis biomarker, lipoarabinomannan, from patient urine using silver plasmonic gratings with thin plasma-activated alumina. While powerful, biomarker binding density was limited by the surface density of plasma-activated carbonyl groups, that degraded quickly, resulting in immediate use requirement after plasma activation. Therefore, development of stable high density binding surfaces such as high binding polystyrene is essential to improving shelf-life, reducing binding protocol complexity, and expanding to a wider range of applications. However, any layers topping the plasmonic grating must be ultra-thin (<10 nm) for the plasmonic enhancement of adjacent signals. Furthermore, fabricating thin polystyrene layers over alumina is nontrivial because of poor adhesion between polystyrene and alumina. Herein, we present the development of a stable, ultra-thin polystyrene layer on the gratings, which demonstrated 63.8 times brighter fluorescence compared to commercial polystyrene wellplates. Spike protein was examined for COVID-19 demonstrating the single-molecule counting capability of the hybrid polystyrene-plasmonic gratings.more » « less
- 
            Abstract Reducing the Schottky barrier height and Fermi level de‐pinning in metal‐organic semiconductor contacts are crucial for enhancing the performance of organic transistors. The reduction of the Schottky barrier height in bottom‐contact top‐gate organic transistors is demonstrated by adding 1 nm thick atomic layer deposited Al2O3on the source and drain contacts. By using two different donor‐acceptor copolymers, bothp‐andn‐type transistors are investigated. Temperature‐dependent current–voltage measurements from non‐treated, self‐assembled monolayer treated, and Al2O3treated Au source‐drain contact field‐effect transistors with varying channel lengths are carried out. The drain current versus drain voltage near zero gate voltage, which may be described by the thermionic emission model at temperatures above 150 K, allows the estimation of the Schottky barrier height (φB). The Al2O3contact‐treated transistors show more than 40% lowerφBcompared with the non‐treated contacts in thep‐type transistor. Similarly, an isoindigo‐based transistor, withn‐type transport, shows a reduction inφBwith Al2O3treated contacts suggesting that such ultrathin oxide layers provide a universal method for reducing the barrier height.more » « less
- 
            Abstract The emergence of multilayer metamaterials in the research field of enhancing spontaneous emission rates has recently received extensive attention. Previous research efforts mostly focus on periodic metal-dielectric multilayers in hyperbolic dispersion region; however, the influence of lattice order in subwavelength multilayers on spontaneous emission is rarely studied. Here, we observe the stronger Purcell enhancement of quantum dots coupled to the aperiodic metal-dielectric multilayer with Thue-Morse lattice order from elliptical to hyperbolic dispersion regions, compared to the periodic multilayer with the same metal filling ratio. This work demonstrates the potential of utilizing quasiperiodic metamaterial nanostructures to engineer the local density of states for various nanophotonic applications.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
